Embedded IDE Link™ 4
User’s Guide

For Use with Green Hills® MULTI®

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Embedded IDE Link™ User’s Guide
© COPYRIGHT 2007-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2007 Online only

March 2008 Online only
October 2008 Online only
March 2009 Online only

September 2009 Online only
March 2010 Online only

New for Version 1.0 (Release 2007b+)
Revised for Version 1.0.1 (Release 2008a)
Revised for Version 1.1 (Release 2008b)
Revised for Version 1.2 (Release 2009a)
Revised for Version 4.0 (Release 2009b)
Revised for Version 4.1 (Release 2010a)

Getting Started

1

Product Overviewcoi ..

Software Structure and Components
Componentsuiutitii i e e
Automation Interface
Project Generator i
Verificationiiiiiiniiiiie.
Configuring Your Software,
Configuring Green Hills® MULTI to use Full Directory

Paths

Software Requirements

1-2

1-4
1-4

1-5
1-6

1-9

Automation Interface

2|

Getting Started with Automation Interface
Introducing the Automation Interface Tutorial
Starting and Stopping Green Hills MULTI From the

MATLAB Desktop .. .vvviveiii i
Running the Interactive Tutorial
Querying Objects for Green Hills MULTI Software
Loading Files into Green Hills MULTI Software
Running the Project i ..
Working With Data in Memory
More Memory Data Manipulation
Closing the Connections to Green Hills MULTI Software ..
Tasks Performed During the Tutorial

Constructing Objects iiiiieeeenn..
Example — Constructor for ghsmulti Objects

vi

Properties and Property Values 2-21

Working with Properties 2-21
Setting and Retrieving Property Values 2-21
Setting Property Values Directly at Construction 2-22
Setting Property Values withset 2-22
Retrieving Properties withget 2-23
Direct Property Referencing to Set and Get Values 2-23
Overloaded Functions for ghsmulti Objects 2-24
ghsmulti Object Properties 2-25
Quick Reference to ghsmulti Properties 2-25
Details About ghsmulti Object Properties 2-25

Project Generator

3

Introducing Project Generator 3-2
Project Generator Tutorial 3-3
Process for Building and Generating a Project 3-3
Createthe Model i, 3-4
Adding the Target Preferences Block to Your Model 3-5
Specifying Simulink Configuration Parameters for Your
Model e 3-7
Creating Your Project 3-9
Model Reference, 3-11
About Model Reference, 3-11
How Model Reference Works 3-11
Using Model Reference, 3-12
Configuring Targets to Use Model Reference 3-14

Block Reference

q

Block Library: idelinklib_ghsmulti 4-2

Contents

Blocks — Alphabetical List

5

Index

vii

Contents

o
ol

Getting Started

® “Product Overview” on page 1-2
® “Software Structure and Components” on page 1-4

* “Software Requirements” on page 1-10

1 Getting Started

Product Overview

Embedded IDE Link™ software provides an interface between MATLAB® and
the Green Hills MULTI® IDE software. The software enables you to

® Access the processor

e Manipulate data on the processor

¢ Manage projects within the IDE
while using the MATLAB numerical analysis and simulation functions.

Embedded IDE Link software connects MATLAB and Simulink® with Green
Hills MULTT integrated development and debugging environment from Green
Hills®. The software enables you to use MATLAB and Simulink to debug and
verify embedded code running on many microprocessors that Green Hills
MULTI software supports, such as the ARM®, Freescale™ MPC5500 and
MPC7400, Blackfin®, and NEC® V850 families.

Using the software, you can perform the following tasks and others related to
Model-Based Design:

¢ Function calls — Write scripts in MATLAB to execute any function in the
Green Hills MULTI IDE

® Automation — Write automated tests in MATLAB to execute on your
processor, including control and verification operations

® Host-Processor Communication — Communicate with the processor
directly from MATLAB, without going to the IDE

e Verification and Validation

= Load and execute projects into the Green Hills MULTI IDE software
from the MATLAB command line

= Build and compile code, and then use vectors of test data and parameters
to test the code

= Build and compile your code, and then download the code to the
processor and execute it

1-2

Product Overview

® Design models — Design models and algorithms in MATLAB and Simulink
and run them on the processor

® Generate code — Generate executable code for your processor directly from
the models designed in Simulink, and execute it

Embedded IDE Link software includes a project generator component. With
the project generator component, you can generate a complete project file for
Green Hills MULTI software from Simulink models, using C code generated
with Real-Time Workshop® software. Thus, you can use both Real-Time
Workshop and Real-Time Workshop® Embedded Coder™ software to generate
generic ANSI C code projects for Green Hills MULTI from Simulink models.
You can then build and run the code on supported processors.

The following list suggests some of the uses for Embedded IDE Link software:
® Create test benches in MATLAB and Simulink for testing your manually

written or automatically generated code running on a variety of DSPs

® Generate code and project files for Green Hills MULTI software from
Simulink models using both Real-Time Workshop and Real-Time Workshop
Embedded Coder software for rapid prototyping or deployment of a system
or application

® Build, debug, and verify embedded code on supported processors with
MATLAB, Simulink, and Green Hills MULTI software

® Perform processor-in-the-loop (PIL) testing of embedded code

1-3

1 Getting Started

Software Structure and Components

In this section...

“Components” on page 1-4
“Automation Interface” on page 1-4
“Project Generator” on page 1-5
“Verification” on page 1-5

“Configuring Your Software” on page 1-6

“Configuring Green Hills® MULTI to use Full Directory Paths” on page 1-9

Components

Embedded IDE Link software comprises these components

¢ Automation Interface — Enables communication between MATLAB and
Green Hills® MULTI® software.

® Project Generation — Uses Simulink to let you build models, simulate
them, and generate code from the models directly to the processor.

¢ Verification — Validate and verify your projects. You can simulate
algorithms and processes in Simulink models and concurrently on your
processor. Comparing the concurrent simulation results helps verify the
fidelity of your model or algorithm code.

Automation Interface

The Automation Interface component enables you to use MATLAB functions
and methods to communicate with the Green Hills MULTI IDE software.
With the MATLAB functions, you can perform the following program
development tasks:

® Automate project management.

¢ Debug projects by manipulating the data in the processor memory (internal
and external) and registers.

¢ Exercise functions from your project on the processor.

Software Structure and Components

® Communicate between the host and processor applications.

The Automation Interface component provides the following functionality
in the Debug component—methods and functions for project automation,
debugging, and data manipulation.

Project Generator

The Project Generator component is a collection of methods that use the
Green Hills MULTI API to create projects in Green Hills MULTI and generate
code with Real-Time Workshop. With the interface, you can do the following:

® Automatic project-based build process — Automatically create and build
projects for code generated by Real-Time Workshop or Real-Time Workshop
Embedded Coder.

® Custom code generation — Use Embedded IDE Link software with any
Real-Time Workshop Embedded Coder System Target File (STF) to
generate both processor-specific and optimized code.

® Automatic downloading and debugging — Debug generated code in the
Green Hills MULTI debugger, using either the instruction set simulator or
real hardware.

® (Create and build projects for Green Hills MULTI from Simulink models
— Project Generator uses Real-Time Workshop or Real-Time Workshop
Embedded Coder to build projects that work with supported processors.

® Generate custom code using the Configuration Parameters in your model
with the system target files multilink_ert.tlc and multilink_grt.tlc.

Verification

Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link software provide the
following verification tools.

®* Processor in the loop (PIL) cosimulation — Use cosimulation
techniques to verify generated code running in an instruction set simulator
or real hardware environment.

1 Getting Started

¢ Execution profiling — Gather execution profiling measurements with
Green Hills MULTT instruction set simulator to establish the timing
requirements of your algorithm.

Configuring Your Software

Embedded IDE Link software requires some information about your MULTI
installation before you can use the software to develop projects in MULTI
from MATLAB. To configure the interface between MATLAB and MULTI,
provide the information in the following table. Embedded IDE Link software
provides a GUI-based configuration utility to help you configure the software

and interface.

GUI Configuration | Description

Parameter Information

Directory MULTI Identifies the path to your Green Hills
installation software.
directory

Configuration Primary Identifies the processor on which you
processor are developing.

Debug Debug server Specifies the type of debug server to use.

server type

Host name

Host name

Specifies the name of the machine that
runs your Embedded IDE Link service.

Port number

Port number

Specifies the port for communicating
with the host and Embedded IDE Link
service. The service listens on this port.

Configuring Embedded IDE Link Software

You must configure your installation before you start working with the
software and MULTI.

To generate code for Blackfin processors, the software supports only the
Green Hills version of the Blackfin compiler.

Software Structure and Components

Note The software does not support using Analog Devices™ Blackfin®
compiler. When you select your configuration during the configuration
process, do not select bfadi_standalone.tgt from the Configuration list.
bfadi standalone.tgt uses the ADI compiler.

Follow these steps to open the Embedded IDE Link configuration utility:

Note You must perform this configuration process before using Embedded
IDE Link software.

1 Enter ghsmulticonfig at the MATLAB prompt.

The Embedded IDE Link Configuration dialog box opens, as shown in the
following figure.

L =] Embedded IDE Link Configuration for Green Hills(R) | x|

—MULTI Installation

Directory: I Browse... |

Configuration; I ;I

Debug server: I

— Service

Host name: IIl:n:thDst Port number: | 4444

¥ Show server status window

oK cancel | Help | Apply

1-7

1 Getting Started

2 In the Directory field, enter the path to the executable file multi.exe
for your Green Hills MULTT installation. Click Browse to search for the
file if necessary.

3 From the Configuration list, select your primary processor. Embedded
IDE Link software supports a variety of processors. Choose one
that matches your development platform. In many cases, the
processor_standalone.tgt variants, such as ppc_standalone.tgt, work
well. Refer to your Green Hills MULTI documentation for more information
about the configuration options for processors.

4 Enter the debug server string in Debug server. The string you enter
sets specific values for processors, such as the board support library and
whether the processor is big or little endian.

The standard input string is debugconnection. To use a processor
simulator, such as the MPC5554 simulator, enter the string

simppc -cpu=ppc5554 -fast -dec-rom_use_entry

Your MULTI documentation provides more information about the debug
server options and how to use them. You can find more debug server string
for simulators in the reference material for ghsmulticonfig.

Note If you use a custom board, add the -bsp option to the Debug server
string to specify your processor. For example, add -bsp=mpc5554 if you use
the MPC5554 EVB.

5 In Host name, enter the name of the machine that is going to run the
Embedded IDE Link service. When you construct a ghsmulti object, the
ghsmulti function starts the Embedded IDE Link service. To launch the
service, the function needs to know where the service will run. The Host
name string identifies that location. The default value is localhost,
meaning the service runs on the local machine. No other input is valid.

6 Enter the port number for the service in Port number.

Port number 4444 is the default port value. To change the port used, enter
a different value in this field. Verify that the port you enter is available.

1-8

Software Structure and Components

If the port number you enter is not available, the Embedded IDE Link
service does not start. Thus, you get an error message in MATLAB when
you try to construct a ghsmulti object.

7 Select or clear Show server status window to specify whether the
Embedded IDE Link service status appears in the task bar. The default
value is to show the service status. Clearing Show server status window
hides the status in the task bar. Select this option as a best practice.
Keeping this option selected enables the software to shut down the
communication services for Green Hills MULTI completely.

8 Click OK to complete the configuration process and close the dialog box.

Configuring Green Hills MULTI to use Full Directory

Paths

When you install MULTTI to use with the software, MULTI sets the Show
Paths option to use relative file paths. To ensure that projects and programs
build correctly, configure MULTI to use full directory paths. Follow these
steps to change the configuration in MULTI.

1 Start MULTI from your desktop.

2 Switch to the Project Manager tool.

3 Select View > Show Paths > Full Paths.

1 Getting Started

Software Requirements

For detailed information about the software and hardware required to use
Embedded IDE Link software, refer to the Embedded IDE Link system
requirements areas on the MathWorks Web site:

e Requirements for Embedded IDE Link:
www.mathworks.com/products/ide-link/requirements.html

e Requirements for use with Green Hills MULTI:
www.mathworks.com/products/ide-link/ghs-adaptor.html

1-10

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/ghs-adaptor.html

Automation Interface

® “Getting Started with Automation Interface” on page 2-2
¢ “Constructing Objects” on page 2-19

e “Properties and Property Values” on page 2-21

¢ “ghsmulti Object Properties” on page 2-25

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2

“Starting and Stopping Green Hills MULTI From the MATLAB Desktop”
on page 2-4

“Running the Interactive Tutorial” on page 2-8

“Querying Objects for Green Hills MULTI Software” on page 2-8
“Loading Files into Green Hills MULTI Software” on page 2-9
“Running the Project” on page 2-11

“Working With Data in Memory” on page 2-12

“More Memory Data Manipulation” on page 2-14

“Closing the Connections to Green Hills MULTI Software” on page 2-17

“Tasks Performed During the Tutorial” on page 2-17

Introducing the Automation Interface Tutorial

Embedded IDE Link software provides a connection between MATLAB
software and a processor in Green Hills MULTI development environment.
You use MATLAB objects as a mechanism to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that verify
and test algorithms that run in their final implementation on your production
processor.

Note Before using the functions available with the objects, you must
designate a server and processor in Green Hills MULTI software. The object
you create is specific to the server and processor you specify.

To help you start using objects in the software, Embedded IDE Link software
includes a tutorial—multilinkautointtutorial.m. As you work through

Getting Started with Automation Interface

this tutorial, you perform the following tasks that step you through creating
and using objects to interact with the Green Hills MULTI IDE:

1 Select your primary server and port.

2 Create and query objects to Green Hills MULTI IDE.

3 Use MATLAB to load files into Green Hills MULTI IDE.

4 Work with your Green Hills MULTTI IDE project from MATLAB.

5 Close the connections you opened to Green Hills MULTI IDE.

The tutorial covers some methods and functions for the software. The
following tables show functions and methods for the software. The functions
do not require an object. The methods require an existing ghsmulti object to
use as an input argument for the method.

Functions for Working with Green Hills MULTI

The following table shows functions that do not require an object.

Function Description

ghsmulti Construct an object that refers to a Green Hills
MULTI IDE instance. When you construct the
object you specify the IDE instance by host and
port.

ghsmulticonfig Set Embedded IDE Link software preferences.

Methods for Working with ghsmulti Objects in Green Hills
MULTI

The following table presents some of the methods that require a ghsmulti
object.

2-3

2 Automation Interface

Methods Description

add Add file to project

address Return address and page for entry in symbol
table in Green Hills MULTI IDE

build Build project in Green Hills MULTI

cd Change working directory

connect Connect IDE to processor

display Display properties of object that references Green
Hills MULTI IDE

halt Terminate execution of process running on
processor

isrunning Test whether processor is executing process

load Load built project to processor

open Open file in project

read Retrieve data from memory on processor

regread Read values from processor registers

regwrite Write data values to registers on processor

reset Restore program counter (PC) to entry point for
current program.

restart Restore processor to program entry point

run Execute program loaded on processor

write Write data to memory on processor

Starting and Stopping Green Hills MULTI From the

MATLAB Desktop

Embedded IDE Link software provides you the ability to control MULTI
software from the MATLAB command window. When you create a ghsmulti
object, MATLAB starts the services shown in the following table to enable
MATLAB to communicate with the Green Hills MULTI IDE:

Getting Started with Automation Interface

Service Type for Process Name Description
Each Port
Python Service mpythonrun.exe Python is a programming

language the software uses
to establish a connection
between MATLAB and

MULTI.
Python Service svc_python.exe Connection to IDE.
Python Service svc_router.exe Connection to IDE.
Python Service svc_statemgr.exe | Connection to IDE
Python Service svc_window.exe Connection to IDE.
Embedded IDE Link | Not applicable Enables MATLAB to send
service commands to the Green

Hills MULTTI development
environment. This is a child
process of the python services.

Each time you create a ghsmulti object, the software starts another set of the
python services shown in the table.

Starting Green Hills MULTI From MATLAB

When you use the ghsmulti function, the software starts two classes of
services—python services and the Embedded IDE Link service for each new
port. The entries in the following table describe how the software controls the
IDE when you create a ghsmulti object:

2 Automation Interface

2-6

Create ghsmulti Object with ghsmulti Status | Result
Function of IDE
_ _ Not The software starts the Embedded
id=ghsmulti running | IDE Link service and the IDE connects
to the default host name and port
number—localhost and 4444 as set
in the configuration options.
Not The software starts the Embedded IDE
id=ghsmulti('hostname','localhost','portnum',4444) | yynning | Link service and the IDE and connects
to the specified host name and port
number—1localhost and 4444.
_ _ Running | The software connects to the existing
id2=ghsmulti Embedded IDE Link service connected
to the default host name and port.
Running | The software starts a new the

id2=ghsmulti('hostname', 'localhost', 'portnum',4446)

Embedded IDE Link service connected
to the specified host name and port
number.

When the software starts the Embedded IDE Link service, the following
service dialog box appears on your desktop:

+) Embedded IDE Link MU

Launcher

=101 x|

Hozthame: | localhost

Part Murm: |4444

HClients: |1

kuliDir: | C:hghsh_ 01

Information in the window provides details about the service. Clicking
Launcher opens the MULTI Launcher utility.

Getting Started with Automation Interface

Stopping Green Hills MULTI From MATLAB

After you complete your development work with the software, best practice
suggests that you close the IDE from MATLAB. Two conditions control how
you close the IDE, as shown in the following table:

The Embedded IDE Link Service
State

To Close the IDE

One or more services appear in the
task bar and the Embedded IDE
Link service dialog boxes are visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Verify that the MULTI clients are
no longer connected by checking
that #Clients in each service
dialog box 1s 0.

3 Close the service dialog boxes.

Services appear in the task bar
but the service dialog boxes are not
visible.

Perform these steps:

1 Enter clear all inMATLAB to
remove the ghsmulti objects from
your workspace.

2 Open the Microsoft®Windows
Task Manager.

3 Click Processes.

4 Select svc_router.exe from
the list. Closing this service
stops mpythonrun.exe,
svc_window.exe, and
svc_statemgr.exe.

5 Click End Now.

6 Select svc_python.exe from the
list.

2 Automation Interface

The Embedded IDE Link Service | To Close the IDE
State

7 Click End Now.

Note Clicking the task bar icon for the service and selecting close does not
close the IDE correctly.

Running the Interactive Tutorial

You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run multilinkautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking multilinkautointtutorial.m.

Querying Objects for Green Hills MULTI Software

In this tutorial section you create the connection between MATLAB and
Green Hills MULTI IDE. This connection, or ghsmulti object, is a MATLAB
object that you save as variable id. You use function ghsmulti to create
ghsmulti objects. ghsmulti supports input arguments that let you specify
values for ghsmulti object properties, such as the global timeout. Refer to the
ghsmulti reference information for more about the input arguments.

Use the generated object id to direct actions to your project and processor. In
the following tasks, id appears in all method syntax that interact with the
IDE primary target and the processor: The object id identifies and refers to a
specific instance of the IDE.

You must include the object in any method syntax you use to access and
manipulate a project or files in a session in Green Hills MULTI software:

Getting Started with Automation Interface

1 Create an object that refers to your selected service and port. Enter the
following command at the prompt.

id = ghsmulti('hostname', 'localhost’', 'portnum',4444)

2 Next, enter display(id) at the prompt to see the status information.

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\

Embedded IDE Link software provides three methods to read the status of
a processor:

e info — Return a structure of testable session conditions.
e display — Print information about the session and processor.

e isrunning — Return the state (running or halted) of the processor.
3 Verify that the processor is running by entering

runstatus = isrunning(id)

The MATLAB prompt responds with message that indicates the processor
1s stopped:

runstatus =

0

Loading Files into Green Hills MULTI Software

You have established the connection to a processor and board. Using three
methods you learned about the hardware, and whether it was running. Next,
give the processor something to do.

In this part of the tutorial, you load the executable code for the CPU in the

IDE. Embedded IDE Link software includes a tutorial project file for Green
Hills MULTI. Through the next commands in the tutorial, you locate the

2-9

2 Automation Interface

tutorial project file and load it into Green Hills MULTI. The open method
directs Green Hills MULTTI to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a directory to
which you have write access. Embedded IDE Link software cannot create a
directory for you. Create one in the Microsoft Windows directory structure
before you proceed with the this tutorial.

Green Hills MULTTI has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. To change the working directory to
your writable directory:

1 Use cd to switch to the writable directory

prj_dir=cd('C:\ide_link_mu_demo"')

where the name and path to the writable directory is a string,
such as C:\ide_link_mu_demo as used in the example. Replace
C:\ide_link_mu_demo with the full path to your writable directory.

2 Change your working directory to the new directory by entering the
following command:

cd(id,prj_dir)

3 Use the following command to create a new Green Hills MULTI project
named debug_demo.gpj in the new directory:

new(id, 'debug_demo.gpj')

Switch to the IDE to verify that your new project exists. Next, add source
files to your project.

4 Add the provided source file—multilinkautointtutorial.c to the project
debug_demo.gpj using the following command:

add(id, 'multilinkautointtutorial')

2-10

Getting Started with Automation Interface

5 Save your project.

save(id, 'my_debug_demo.gpj', 'project')

Your IDE project is saved with the name my_debug_demo.gpj in your
writable directory. The input string ’project’ specifies that you are saving
a project file.

6 Next, set the build options for your project. Use the following command to
set the compiler build options to use and specify a processor (optional).

setbuildopt(id, 'Compiler','-G -cpu=V850")

The input argument - cpu=V850 is optional to specify the processor. Change
to processor designation to match your processor if necessary.

Running the Project

After you create dot_project_c.gpj in the IDE, you can use Embedded IDE
Link software functions to create executable code from the project and load
the code to the processor.

To build the executable and download and run it on your processor:

1 Use the following build command to build an executable module from the
project debug_demo.gpj.

build(id, 'all',20) % Set optional time-out period to 20 seconds.

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.

load(id, 'debug_demo',30); % Set time-out value to 30 seconds.

Embedded IDE Link software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you just loaded on to the processor, and then use halt

to stop the processor.

1 Enter the following methods at the command prompt and review the
response in the MATLAB command window.

2-11

2 Automation Interface

2-12

run(id) % Start the program running on the processor.
halt(id) % Halt the processor.
reset(id) % Reset the program counter to start of program.

Use isrunning after the run method to verify that the processor is running.
After you stop the processor, isrunning can verify that the processor has
stopped.

Working With Data in Memory

Embedded IDE Link software provides methods that enable you to read and
write data to memory on the processor. Reading and writing data depends
on the symbol table for your project. The symbol table is available only after
you load the executable into the debugger. This sections introduces address
and dec2hex. Use them to read the addresses of two global variables—ddat
and idat.

1 After you load debug_demo into the debugger, enter the following commands

to read the addresses of ddat and idat:

ddatA=address(id, '‘ddat')
ddatA =

3145744 0
ddatI=address(id, 'idat')
ddatI =

3145728 0

2 Review the results in hexadecimal representation.

dec2hex(ddatA)
ans =

300010
000000

dec2hex(ddatI)

Getting Started with Automation Interface

ans =

300000
000000

After you load the target code to the processor, you can examine and modify
data values in memory, as the previous read function examples demonstrated.

For non-changing data values in memory (static values), the values are
available immediately after you load the program file.

A more interesting case is looking at variable values that change during
program execution. Manipulating changing data values at intermediate points
during execution can provide helpful analysis and verification information.

To enable you to read and write data while your program is running, the
software provides methods to insert and delete breakpoints in the source
programs. Inserting breakpoints lets you pause program execution to read or
change variable data values. You cannot change values while your program is
running.

The method insert creates a new breakpoint at either a source file locations,
such as a line number, or at a physical memory address. insert takes either
the line number or the address as an input argument.

To read the values in the next section of this tutorial, use the following
methods to insert breakpoints at lines 24 and 29 in the source file
multilinkautointtutorial.c

1 Change directories to your original working directory.
cd(id,proj_dir);

2 (Optional for convenience) Create variables for the line numbers in the
source file.

brkpt24
brtpt29

24;
29;

3 Use the following commands to insert breakpoints on line 24 and line 29 of
the source file:

2-13

2 Automation Interface

insert(id, 'multilinkautointtutorial',brkpt24); % Insert breakpoint on line 24.

insert(id, 'multilinkautointtutorial',brkpt29); % Insert breakpoint on line 29.

4 Open and activate the file in the IDE from the MATLAB command window
by issuing the following commands:

open(id, 'multilinkautointtutorial');

activate(id, 'multilinkautointtutorial');

Activating multilinkautointtutorial.c transfers focus in the IDE to the
activated file. Switch to the IDE to verify that the file is in your project
and open.

When you look in the IDE debugger window, the breakpoints you added to
multilinkautointtutorial.c are marked by a STOP sign icon on lines 24
and 29.

A similar method, remove, deletes breakpoints.

To help you inspect the source file in the IDE and verify the breakpoints, the
open and activate methods display the file multilinkautointtutorial.c
in the IDE and force the source file to the front.

One final method actually connects the IDE to your hardware or simulator.
connect takes a ghsmulti object as an input argument to connect the specific
IDE primary target referenced by id to the associated processor.

More Memory Data Manipulation

The source file multilinkaautointtutorial.c defines two 1-by-4 global data
arrays—ddat and idat. You can locate the declaration in the file. Embedded
IDE Link software provides the read and write methods so you can access the
arrays from MATLAB. Find the declaration and note the initialization values.

This tutorial section demonstrates reading and writing data in memory, and
controlling the processor.

1 Get the address of the symbols ddat and idat. Enter the following
commands at the prompt.

2-14

Getting Started with Automation Interface

ddat_addr=address(id, 'ddat'); % Get address from symbol table.
idat_addr=address(id, 'idat');

2 Create two MATLAB variables to specify the data types for ddat and idat.

ddat_type- 'double’;
idat_type='int32';

3 Declare some values in two MATLAB variables.

ddat_value=double([pi 12.3 exp(-1) sin(pi/4)]);
idat_value=int32(1:4);

4 Stop the processor.
halt(id)

5 Reload the project. If you did not save the source file in the project,
reloading the project removes the breakpoints you added and move the
program counter (PC) to the start of the program.

% Reload program file (.gpj). Reset PC to program start.
reload(id,100);

6 Use the following commands to restore the breakpoints on line 24 and 29.

insert(id, 'multilinkautointtutorial.c',brkpt24);
insert(id, 'multilinkautointtutorial.c',brkpt29);

7 Use the following method to connect the IDE to the processor:
connect(id);

8 With the breakpoints in the code, run the program until it stops at the
first breakpoint on line 24.

run(id, 'runtohalt',30); % Set time-out to 30 seconds.

9 Check the current values stored in ddat and idat. Later in this tutorial
you change these values from MATLAB.

% Do ddat values match initialization values in the source?
ddatV=read(id,address(id, 'ddat',ddat_type,4)

2-15

2 Automation Interface

2-16

idatV=read(id,address(id, 'idat',idat_type,4)
MMATLAB displays the values of ddatV and idatV.
ddatVv=
16.300 -2.1300 5.1000 11.8000
idatv=
1 508 646 7000

10 Change the values in ddat and idat by writing new values to the memory
addresses.

% Write pi, 12.3, exp(-1), and .7070 to memory.
write(id,address(id, 'ddata'),ddat_value)

% Write vector [1:4] to memory.
write(id,address(id, 'idat'),idat_value)

11 Resume the program execution from the breakpoint and run until the
program stops.

run(id, 'runtohalt', '30); % Stop at next breakpoint (line 29).
12 Read the values in memory for ddat and idat to verify the changes.

% Read the data as double data type.
ddatV = read(id,address(id(id, 'ddat'),ddat_type,4)

ddatv=
3.1416 12.3000 0.3679 0.7071

% Read the data as int32 data type.
idatV = read(id,address(id, 'idat'),idat_type,4)

idatv=
1 2 3 4

The data stored in ddat and idat are what you wrote to memory.

Getting Started with Automation Interface

13 After you review the data, restart the processor to run to return the PC
to the program start.

restart(id);

Closing the Connections to Green Hills MULTI
Software

Objects that you create in Embedded IDE Link software have connections
to Green Hills MULTI IDE. Until you delete these objects, the Green Hills
MULTT process (Idde.exe in the Windows Task Manager) remains in
memory. Closing MATLAB removes these objects automatically, but there
may be times when it helps to delete the handles manually, without quitting
MATLAB.

Note When you clear the last ghsmulti object, the software does not close
the running Embedded IDE Link service. When it does close the IDE, it does
not save current projects or files in the IDE, and it does not prompt you to
save them.

A best practice is to save your projects and files before you clear ghsmulti
objects from your MATLAB workspace.

Use the following commands to close the project files in Green Hills MULTI
IDE and remove the breakpoints you added to the source file.

close(id, 'debug_demo.gpj', 'project') % Close the project file.
remove(id, 'multilinkautointtutorial.c',brkpt24);

remove(id, 'multilinkautointtutorial.c',brkpt29);
Finally, to delete your link to Green Hills MULTI use clear id.

You have completed the Automation Interface tutorial using Embedded IDE
Link software.

Tasks Performed During the Tutorial

During the tutorial you performed the following tasks:

2-17

2 Automation Interface

2-18

1 Created and queried objects that refer to a session in Embedded IDE Link
software to get information about the session and processor.

2 Used MATLAB software to load files into the Green Hills MULTI IDE and
used methods in MATLAB software to run that file.

3 Closed the links you opened to Green Hills MULTTI software.

This set of tasks is used in any development work you do with signal
processing applications. Thus, the tutorial gives you a working process for
using Embedded IDE Link software and your signal processing programs to

develop programs for a range of processors.

Constructing Objects

Constructing Objects

When you create a connection to a session in Green Hills MULTI using the
ghsmulti function, you create a ghsmulti object (in object-oriented design
terms, you instantiate the ghsmulti object). The object implementation relies
on MATLAB object-oriented programming capabilities like the objects in
MATLAB or Filter Design Toolbox™ software.

The discussions in this section apply to the objects in Embedded IDE Link
software. Because ghsmulti objects use the MATLAB software techniques,
the information about working with the objects, such as how you get or set
object properties or use methods, apply to the ghsmulti objects in Embedded
IDE Link software.

Like other MATLAB structures, ghsmulti objects have predefined fields
referred to as object properties.

You specify object property values by the following methods:

® Specifying the property values when you create the object
¢ Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set”.

Example — Constructor for ghsmulti Objects

The easiest way to create an object is to use the function ghsmulti to create
an object with the default properties. Create an object named id referring to a
session in Green Hills MULTI by entering the following syntax:

id = ghsmulti

MATLAB responds with a list of the properties of the object id you created
along with the associated default property values.

MULTI Object:
Host Name : localhost
Port Num : 4444

2-19

2 Automation Interface

Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

The object properties are described in the ghsmulti documentation.

Note These properties are set to default values when you construct links.

2-20

Properties and Property Values

Properties and Property Values

In this section...

“Working with Properties” on page 2-21

“Setting and Retrieving Property Values” on page 2-21

“Setting Property Values Directly at Construction” on page 2-22
“Setting Property Values with set” on page 2-22

“Retrieving Properties with get” on page 2-23

“Direct Property Referencing to Set and Get Values” on page 2-23

“Overloaded Functions for ghsmulti Objects” on page 2-24

Working with Properties

Links (or objects) in this Embedded IDE Link software have properties
associated with them. Each property is assigned a value. You can set the
values of most properties, either when you create the link or by changing the
property value later. However, some properties have read-only values. Also, a
few property values, such as the board number and the processor to which
the link attaches, become read-only after you create the object. You cannot
change those after you create your link.

Setting and Retrieving Property Values

You can set ghsmulti object property values by either of the following
methods:

¢ Directly when you create the link — see “Setting Property Values Directly
at Construction”

® By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve ghsmulti object property values with the get function.

Direct property referencing lets you either set or retrieve property values
for ghsmulti objects.

2-21

2 Automation Interface

2-22

Setting Property Values Directly at Construction

To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
ghsmulti:

¢ A string for the property name to set, followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

® The property value to associate with the named property. Sometimes this
value is also a string.

You can include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Link Property Values at Construction

Create a connection to an instance of the IDE in Green Hills MULTI software
and set the following object properties:

¢ Link to the specified MULTI instance and host.
® Specify the communication port on the host.

® Set the global timeout to 5 s. The default is 10 s.
Set these properties when you construct the object by entering

id = ghsmulti('hostname', 'localhost', 'portnum',4444, 'timeout',5);

The localhost, portnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set

After you construct an object, the set function lets you modify its property
values.

Using the set function, you can Set link property values.

Properties and Property Values

Example — Setting Link Property Values Using set

To set the timeout specification for the link id from the previous section,
enter the following syntax:

set(id, 'timeout',8);

get(id, 'timeout');
ans=

The display reflects the changes in the property values.

Retrieving Properties with get

You can use the get command to retrieve the value of an object property.

Example — Retrieving Link Property Values Using get

To retrieve the value of the hostnameproperty for id, and assign it to a
variable, enter the following syntax:

host=get(id, 'hostname"')
host =

localhost

Direct Property Referencing to Set and Get Values

You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links
To reference an object property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time out and number of open channels.

2-23

2 Automation Interface

2-24

id = ghsmulti;
id.time = 6;

Overloaded Functions for ghsmulti Objects

Several methods and functions in Embedded IDE Link software have the
same name as functions in other MathWorks products. These functions
behave similarly to their original counterparts, but you apply them to an
object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a list of the methods that act on ghsmulti objects, refer to the “Functions
— Alphabetical List” in the function reference pages.

ghsmulti Object Properties

ghsmulti Object Properties

In this section...

“Quick Reference to ghsmulti Properties” on page 2-25
“Details About ghsmulti Object Properties” on page 2-25

Quick Reference to ghsmulti Properties

The following table lists the properties for the links in Embedded IDE Link
software. The second column indicates to which object the property belongs.
Knowing which property belongs to each object in an interface tells you how
to access the property.

Property
Name

User Settable?

Description

hostname

At construction
only

Reports the name of the host the
Embedded IDE Link service in Green

Hills MULTTI that the object references.

portnum

At construction
only

Stores the number of the port to
communicate with MULTI.

timeout

Yes/default

Contains the global timeout setting for
the link.

Some properties are read only. Thus, you cannot set the property value.

Other properties you can change at any time. If the entry in the User Settable

column is “At construction only,” you can set the property value only when
you create the object. Thereafter, it is read only.

Details About ghsmulti Object Properties
To use the objects for Green Hills MULTI interface, set values for the

following:

® hostname — Specify the session with which the object interacts.

® portnum — Specify the processor in the session. If the board has multiple

processors, procnum identifies the processor to use.

2-25

2 Automation Interface

2-26

® timeout — Specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with ghsmulti objects appear in the
following sections, listed in alphabetical order by property name.

hostname

Property hostname identifies the host that is running the Embedded IDE
Link service. Use hostname to specify the machine to host your service.

To work with a service, you need the hostname and portnum values. Hostname
supports the string localhost only.

portnum

Property portnum specifies the port for communicating with the Embedded
IDE Link service. MATLAB uses sockets to communicate with Green Hills
MULTI. The portnum property value specifies the port, with a default value of
4444, When you create a new ghsmulti object, Embedded IDE Link software
assumes the port value 1s 4444 unless you enter a different value when you
configure the software or use the portnum input argument with ghsmulti.

timeout

Property timeout specifies how long Green Hills MULTI waits for any process
to finish. You set the global timeout when you create an object for a session
in Green Hills MULTI. The default global timeout value 10 s. The following
example shows the timeout value for object id2.

display(id2)

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\

Project Generator

¢ “Introducing Project Generator” on page 3-2
® “Project Generator Tutorial” on page 3-3

¢ “Model Reference” on page 3-11

3 Project Generator

Introducing Project Generator

Project generator provides the following features for developing projects and
generating code:

¢ Automated project building for Green Hills MULTI that lets you create

MULTTI projects from code generated by Real-Time Workshop and
Real-Time Workshop Embedded Coder. Project generator populates
projects in the MULTI development environment.

Blocks in the library idelinklib_ghsmulti for controlling the scheduling
and timing in generated code.

Highly configurable code generation using model configuration parameters
and target preferences block options.

Ability to use Embedded IDE Link software with one of two system target
files to generate code specific to your processor.

Highly configurable project build process.

Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink models to use the Project Generator component,
do one or both of the following tasks:

¢ Add a Target Preferences block from the Embedded IDE Link blockset

(idelinklib_ghsmulti) to the model.

¢ To use the asynchronous scheduler capability in Embedded IDE Link

software, add a hardware interrupt block or idle task block.

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Process for Building and Generating a Project” on page 3-3
“Create the Model” on page 3-4
“Adding the Target Preferences Block to Your Model” on page 3-5

“Specifying Simulink Configuration Parameters for Your Model” on page 3-7

“Creating Your Project” on page 3-9

Process for Building and Generating a Project

In this tutorial, you build a model and generate a project from the model into
Green Hills MULTI.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create the model application.

2 Add the target preferences block from the Embedded IDE Link Target
Preferences library to your model.

3 Double-click the Target Preferences block to open the block dialog box.

4 Select your processor from the Processor list. Verify and set the block
parameters for your hardware, such as CPU clock and the options on the
Memory and Section panes. In most cases, the default settings for the
selected processor work fine.

5 Set the configuration parameters for your model, including the following
parameters:

3-3

3 Project Generator

® Solver parameters such as simulation start and solver options. Choose
the discrete solver when you generate executables. If you are using PIL,
select any setting from the Type and Solver lists.

® Real-Time Workshop options such as processor configuration and
processor compiler selection

6 Generate your project.

7 Review your project in MULTI.

Create the Model
To build the model for this tutorial, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Feedback Gain

i+

Jine Wave

Jocope

Integer Delay

Look for the Integer Delay block in the Discrete library of Simulink and the
Gain block in the Commonly Used Blocks library. This model implements
an audio signal reverberation scheme. Part of the input audio signal passes
directly to the output. A delayed version passes through a feedback loop

Project Generator Tutorial

before reaching the output. The result is an echo, or reverberation, added

to the audio output.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model

To configure your model to work with the processors your IDE supports, add a

target preferences block to your model.

Use the Target Preferences/Custom Board for GHS MULTI block, located in
the idelinklib_ghsmulti block library.

m Simulink Library Browser

Fle Edi View Heb

=1o] x|

JJD = = J_IIET.&'sea':w:em

=l =

Libranes

E Simulink
-- W 2=rospace Blocksst
E Communications Blockset
E Confrol System Tookbox
E Data Acquisiion Tookbox
E EDA Simulator Link
£- W] Embedded DE Link
Common
El--S.J:u:u-:u".eu:I DEs
- Aum TASKING
Analog Devices VisualD5P++
- Green Hils MULT]
- Texas Instruments Code Comp
- 'ﬁ| Fuzzy Logic Toolbox
<| | E

2d IDE LinkiSupporied DEs/Green Hills MULTI I 1

Baddn
imup | Bladkfin Hardware Intermupt

1T

L m 4l | Custom Board for GHS MULTI
=y

i MPCH500 Intermupt

MPCT400 Hardware Intermupt

Showing: Embedded IDE Link/Supporied IDEs/Green Hills MULTI

To configure the Target Preferences/Custom Board for GHS MULTI (the

“Custom Board”) block in your model:

3-5

3 Project Generator

3-6

1 Double-click Embedded IDE Link in the Simulink Library browser to open
the idelinklib_ghsmulti blockset.

2 Double-click the library Target Preferences to see the Custom Board block.

3 Drag and drop the Custom Board block to your model as shown in the
following figure.

m prog_gen_tutorial * i |I:I |£|

Fle Edit View Simulation Format Tools Help
DeEHE| BB 4|92 llinf |Norma| VHE

Feedback Gain

e

Jin= Wave

L]
Cu=tom Board

Ready [1o0% | [|FixedStepDiscrete .

4 Double-click the Custom Board block to open the block dialog box.
5 In the Block dialog box, select your processor from the Processor list.

6 Check the CPU clock value and change it if necessary to match your
processor clock rate.

7 Review the settings on the Memory and Sections tabs to verify that they
are correct for the processor you selected.

8 Click OK to close the Target Preferences dialog box.

Project Generator Tutorial

You have completed the model. Next, configure the model configuration
parameters to generate a project in Green Hills MULTI from your model.

Specifying Simulink Configuration Parameters for
Your Model

The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink.

Setting Solver Options

After you have designed and implemented your digital signal processing
model in Simulink, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
software.

® Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this parameter to inf for completeness.

¢ Under Solver options, select the fixed-step and discrete settings
from the lists. When you use PIL, select any setting on the Type and
Solver lists.

* Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

3-7

3 Project Generator

3-8

Setting Real-Time Workshop Code Generation Options

To configure Real-Time Workshop software to use the correct processor files,
compile your model, and run your model executable file, set the options in
the Real-Time Workshop category of the model Configuration Parameters.
Follow these steps to set the Real-Time Workshop software options to
generate code tailored for your processor:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the appropriate system target
file for code generation—multilink grt.tlc or multilink ert.tlc (if
you use Real Time Workshop Embedded Coder software). The correct
target file might already be selected.

Clicking Browse opens the System Target File Browser to allow you to
change the system target file.

3 On the System Target File Browser, select the proper system target
file multilink_grt.tlc or multilink_ert.tlc, and click OK to close
the browser.

Setting Embedded IDE Link Code Generation Options

After you set the Real-Time Workshop options for code generation, set the
options that apply to your Embedded IDE Link software run-time and build
processes.

1 From the Select tree, choose Embedded IDE Link to specify code
generation options that apply to the processor.

2 Set the following Runtime options:
¢ Build action: Create_project.
¢ Interrupt overrun notification method: Print_message.
3 (optional) Under Link Automation, verify that Export MULTI link

handle to base workspace is selected and provide a name for the handle
in MULTI link handle name.

4 If you are using an actual board, identify a Board Support Package (BSP)
in the Compiler options string (under Project options). For example,

Project Generator Tutorial

enter “-bsp=at91rm9200”. If you do not provide this type of information,
the software can generate errors that do not identify the absence of linker
directives as the cause.

5 Under Code Generation, clear all of the options.
6 Change the category on the Select tree to Hardware Implementation.

7 Verify that the Device type is the correct value for your processor—Analog
Devices, NEC, or Freescale.

You have configured the Real-Time Workshop options that let you generate
a project for your processor. A few Real-Time Workshop categories on the
Select tree, such as Comments, Symbols, and Optimization do not require
configuration for use with Embedded IDE Link software. In some cases, set
options in the other categories to configure other code generation features.

For your new model, the default values for the options in these categories are
correct. For other models you develop, setting the options in these categories
provides more information during the build process. Some of the options
configure the model to run TLC debugging when you generate code. Refer to
your Simulink and Real-Time Workshop documentation for more information
about setting the configuration parameters.

Creating Your Project

After you set the configuration parameters and configure Real-Time
Workshop to create the files you need, you direct Real-Time Workshop to
create your project:

1 Click OK to close the Configuration Parameters dialog box.

2 To verify that you configured your Embedded IDE Link software correctly,
issue the following command at the prompt to open the Embedded IDE
Link Configuration dialog box.

ghsmulticonfig

3 Verify the settings in the Embedded IDE Link dialog box.

4 After you verify the settings, click OK to close the dialog box.

3-9

3 Project Generator

5 Enter cd at the prompt to verify that your working directory is the right
one to store your project results.

6 Click Incremental Build () on the model toolbar to generate your
project into Green Hills MULTI IDE.

When you press with Create_project selected for Build action, the
build process starts the Green Hills MULTI application and populates a
new project.

3-10

Model Reference

Model Reference

In this section...

“About Model Reference” on page 3-11

“How Model Reference Works” on page 3-11

“Using Model Reference” on page 3-12

“Configuring Targets to Use Model Reference” on page 3-14

About Model Reference

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

Lets you develop the modules independently.

Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works

Model reference behaves differently in simulation and in code generation.
This discussion uses the following terms:

The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this model is the topmost model.

Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

3-11

3 Project Generator

3-12

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation

When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (.mex file) for
each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these settings through
the Model Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation

Real-Time Workshop requires executables to generate code from models. If
you have not simulated your model at least once, Real-Time Workshop creates
a .mex file for simulation.

Next, for each referenced model, the code generation process calls make rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make rtw
on the top model. The call to make_rtw links to the library files Real-Time
Workshop created for the associated referenced models.

Using Model Reference

With few limitations or restrictions, Embedded IDE Link software provides
full support for generating code from models that use model reference.

Build Action Setting

The most important requirement for using model reference with the Green
Hills MULTI software supported processors is you must set the Build action

Model Reference

(select Configuration Parameters > Embedded IDE Link) for all models
referred to in the simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.
The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, select set Archive library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive library and issues a warning about the change.

Selecting Archive library disables the Interrupt overrun notification
method, Export MULTI link handle to the base workspace, and
System stack size options for the referenced models.

Target Preferences Blocks in Reference Models

Each referenced model and the top model must include a Target Preferences
block for the correct processor. Configure all the Target Preferences blocks
for the same processor.

The referenced models need target preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

3-13

3 Project Generator

3-14

Other Block Limitations

Model reference with Embedded IDE Link software code generation options
does not allow you to use noninlined S-functions in reference models. Verify
that the blocks in your model do not use noninlined S-functions.

Configuring Targets to Use Model Reference

When you create models to use in Model Referencing, keep in mind the
following considerations:

Your model must use a system target file derived from the ERT or GRT
target files.

When you generate code from a model that references other models,
configure the top-level model and the referenced models for the same
system target file.

Real-Time Workshop builds and Embedded IDE Link software projects do
not support external mode in model reference. If you select the external
mode option, it is ignored during code generation.

Your TMF must support use of the shared utilities directory, as described
in Supporting Shared Utility Directories in the Build Process in the
Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created before MATLAB release R14SP3,
use the following command to make your model compatible with model
reference :

% Set the Model Reference Compliant flag to on.
set_param(bdroot, 'ModelReferenceCompliant','on')

Code that you generate from Simulink models by using Embedded IDE Link
software includes the model reference capability. You do not need to set the
flag.

Block Reference

Block Library: idelinklib_ghsmulti Blocks for Green Hills MULTI
(p. 4-2)

4 Biock Reference

Block Library: idelinklib_ghsmulti

Blackfin Hardware Interrupt
MPC5500 Interrupt
MPC7400 Hardware Interrupt

4-2

Generate Interrupt Service Routine
Generate Interrupt Service Routine

Generate Interrupt Service Routine

Blocks — Alphabetical List

Blackfin Hardware Interrupt

5-2

Purpose

Library

Bladdfin
IRCM B

Hardware Intemupt

Hardware Intemupt

Description

Generate Interrupt Service Routine

Block Library: idelinklib_ghsmulti

Create interrupt service routines (ISR) in the software generated by the

build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes

that are downstream from this block or an Idle Task block connected

to this block. Core interrupts trigger the ISRs. System interrupts

trigger the core interrupts. In the following figure, you see the mapping

possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the

system interrupts.

Interrupt
Description

Valid Range in Parameter

Core interrupt
numbers

7to 15

System interrupt
numbers

0 to 31 (The upper end value depends on the
processor. May be less than 31.)

Blackfin Hardware Interrupt

Dialog
Box

7] source Block Parameters: Hardware Int x|

— Blackfin [nterrupt Block [mazk]

Create Intermupt Service Routing which will erecute the downstream
subsyztemn.

— Parameter

Core |nterupt numbers:
[[1012]

Syztem interrupt numbers:
[19 28]

Simulink, tazk prioities:;
[16057]

Preemption flags: preemptable-1, non-preemptable-0
f101]

[Enable simulation input

ok Cancel Help

Core interrupt numbers
Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range i1s 7 to 15, where
7 through 13 are hardware driven, and 14 and 15 are software
driven. Core interrupts numbered O to 6 are reserved and cannot
be entered in this field.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three
values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

5-3

Blackfin Hardware Interrupt

5-4

System interrupt numbers

System interrupt numbers identify system interrupts to map to
core interrupts. Enter one or more values as a vector. The valid
range is 0 through 31, although the valid range depends on your
processor. Some processors do not support the full range of 32
system interrupts. The software does not test for valid system
interrupt values. You must verify that your values are valid for
your processor. You must specify at least one system interrupt
number to use asynchronous scheduling.

The block maps the first interrupt value in this field to the first
core interrupt value you enter in Core interrupt numbers,

it maps the second system interrupt value to the second core
interrupt value, and so on until it has mapped all of the system
interrupt values to core interrupt values. You cannot map more
than one system interrupt to the same core interrupt. Therefore,
you can enter one system interrupt value in this field and map it
to more than one core interrupt. You cannot enter more than one
value in this field and map the values to one core interrupt.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities

Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

Blackfin Hardware Interrupt

Preemption flags: preemptable — 1, non-preemptable — 0
Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

¢ Entering 1 indicates the corresponding core interrupt can be
preempted.

¢ Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input
When you select this option, Simulink adds an input port to the
Hardware Interrupt block. This port receives input only during
simulation. Connect one or more simulated interrupt sources to
the simulation input.

5-5

MPC7400 Hardware Interrupt

Purpose

Library

MPC7400
IRG

Hw Intemrupt

Intemrupt

Description

Generate Interrupt Service Routine

Block Library: idelinklib_ghsmulti

The block creates ISRs for three processor interrupts—External,
Machine check and System reset. When you incorporate this block in
your model, code generation results in ISRs on the processor that run
the blocks downstream from this block. For more information about
these interrupts, refer to your MPC7400 documentation.

When you enable more than one interrupt on the block dialog box,
the block multiplexes the ISR outputs onto the output port on the
block. To resolve the different ISRs, connect the output port IRQ to

a Demux block. Connect the demultiplexed outputs to downstream
blocks or subsystems. Refer to Examples to see the multiple interrupt
configuration in a model.

MPC7400 Hardware Interrupt

Dialog
Box

[3] source Block Parameters: Interrupt x|

—MPC 7400 Interrupt Block (mask)

Create Interrupt Service Routine which will execute the
downstream subsystem,

—Parameters

[~ Machine check interrupt
r System reset interrupt

[~ Enable simulation input

oK Cancel Help

External interrupt
Interrupt generated by an external system that asserts the intr
pin of the 7400 microprocessor.

Machine check interrupt
Enable the asynchronous, nonmaskable machine check exception
provided by the processor. The exception responds to the
conditions described in the MPC7400 documentation.

System reset interrupt
Enable the asynchronous, nonmaskable System interrupt
exception provided by the processor. The exception responds to
the conditions described in the MPC7400 documentation.

Enable simulation input
Select this option to have Simulink add an input port to the HW
Interrupt block. This port receives input only during simulation.
Connect one or more simulated interrupt sources to the input to
drive the model interrupt processing.

5-7

MPC7400 Hardware Interrupt

Example The following model shows the HW Interrupt block triggering a
subsystem. The interrupt block is configured to respond to external
interrupts.

MPC 7400

IRQ
Hw Interrupt ¢

Interrupt function ()

Interrupt Driven
Subsystem

Here is the block mask.

E! Source Block Parameters: Interrupt EI

—MPC7400 Interrupt Block (mask)

Create Interrupt Service Routine which will execute the
downstream subsystem,

—Parameters
Ve
[T Machine chedk interrupt

r System reset interrupt

[~ Enable simulation input

oK Cancel Help

When your peripherals assert the external interrupt pin on the
processor, the code generated by the HW Interrupt block during the

5-8

MPC7400 Hardware Interrupt

project build process accepts the interrupt and triggers the attached
subsystem through an ISR.

When you select more than one interrupt, connect the output of the
block to a Demux block to separate the ISRs, as shown in the following

model:
MPC 7400
IRQ
Hw Interrupt ¢
Interrupt Demux
function () function ()
External Interrupt Machine Check Interrupt
Driven Subsystem Driven Subsystem

Here is the block mask showing the external and Machine check
interrupts selected.

5-9

MPC7400 Hardware Interrupt

[3] source Block Parameters: Interrupt x|

—MPC 7400 Interrupt Blodk (mask) (ink)

Create Interrupt Service Routine which will execute the
downstream subsystem,

—Parameters

¥ External interrupt

[iMachine check interrupt :

r System reset interrupt

[~ Enable simulation input

oK Cancel Help

To test your interrupt configuration in simulation, select Enable
simulation input on the block dialog box and then input a signal to
the block to simulate the external interrupt.

See Also Idle Task, Memory Allocate, Memory Copy

5-10

MPC5500 Interrupt

Purpose

Library

MPCEEDD
IRQN
Hw/Sw Intemrupt

Intemrupt

Description

Generate Interrupt Service Routine

Block Library: idelinklib_ghsmulti

Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block. Core interrupts trigger the ISRs. System
interrupts trigger the core interrupts.

5-11

MPC5500 Interrupt

5-12

Dialog
Box

E! Source Block F ll
— MPCEROD |nterrupt Black [mazk]

Create Interrupt Service Bouting which will execute the downstrean
subzyztem.

— Parameter

Core |nterupt numbers:
|[35]

Syztem interrupt prionties [0-15, 15 being the highest prionity]:
|[7 7]

Preemption flagz: preemptible-1, non-preemptible-0
J[01]
[v Software Yector Mode

[Enable simulation input

ak. Canicel Help

Core interrupt numbers
Specify a vector of interrupt numbers for the interrupts to
install. The block services these interrupts. When your model
or code raises one of these interrupts, either through hardware
or software, this block reacts to the interrupt and runs the
associated downstream block or function. The valid range or
interrupts depends on the processor. For example, MPC5553
processors support 212 interrupts. MPC5554 processors support
308 interrupts. Each interrupt in the row vector must be unique.
Interrupts that you do not specify in this parameter cause system
failures if your project raises them.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this

MPC5500 Interrupt

field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

System interrupt priorities (0-15, 15 being the highest priority)
Each output of the HW/SW Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Core interrupt numbers. In the default
settings shown in the figure, interrupts 3 and 5 have the same
priority value—7.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

If multiple interrupts share the same priority and are asserted
simultaneously, the block selects the lowest numbered interrupt
first.

Preemption flags: preemptible — 1, non-preemptible — 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

¢ Entering 1 indicates that the interrupt can be preempted.

¢ Entering 0 indicates the interrupt cannot be preempted.

You cannot set a task that has priority higher than the base rate
to be preemptable.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt

5-13

MPC5500 Interrupt

by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Software vector mode
Select this option to put the block and processor in software vector
mode. Enabling this option creates a common interrupt handler.
Clearing this option puts the processor in hardware vector mode.
Refer to the MULTI documentation for more information about
the modes.

Enable simulation input
When you select this option, Simulink adds an input port to
the HW/SW Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

5-14

A

access properties 2-21
Archive_library 3-12

block limitations using model reference 3-14

F

functions
overloading 2-24

G

getting properties 2-23

ghsmulti 2-19

ghsmulti object properties 2-26
portnum 2-26
procnum 2-26

Green Hills MULTI® IDE objects
tutorial about using 2-2

Green Hills Software model reference 3-11

L

link filters properties
getting 2-23
link properties
about 2-25
setting 2-23
link properties, details about 2-25
links
closing Green Hills MULTI® 2-17
details 2-25
loading files into Green Hills MULTI®
IDE 2-9
quick reference 2-25
working with your processor 2-11

M

model reference 3-11
about 3-11
Archive_library 3-12
block limitations 3-14
modelreferencecompliant flag 3-14
setting build action 3-12
target preferences blocks 3-13
using 3-12
modelreferencecompliant flag 3-14
MULTI
starting from MATLAB 2-4
stopping from MATLAB 2-4

o

object
ghsmulti 2-19
object properties
quick reference table 2-25
objects
creating objects for Green Hills MULTI®
IDE 2-8
introducing the objects for Green Hills
MULTI® IDE tutorial 2-2
tutorial about using Automation Interface
for Green Hills MULTI® IDE 2-2
overloading 2-24

P

portnum 2-26
procnum 2-26
properties
link properties 2-25
referencing directly 2-23
retrieving 2-21
function for 2-23
retrieving by direct property referencing 2-23
setting 2-21

Index-1

Index

S

set properties 2-21

start MULTT from MATLAB 2-4
stop MULTI from MATLAB 2-4
structure-like referencing 2-23

Index-2

T

target preferences blocks in referenced
models 3-13

timeout
timeout 2-26

tutorials
objects for Green Hills MULTI® 2-2

	toc
	Getting Started
	Product Overview
	Software Structure and Components
	Components
	Automation Interface
	Project Generator
	Verification
	Configuring Your Software
	Configuring Embedded IDE Link Software

	Configuring Green Hills MULTI to use Full Directory Paths

	Software Requirements

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working with Green Hills MULTI
	Methods for Working with ghsmulti Objects in Green Hills MULTI

	Starting and Stopping Green Hills MULTI From the MATLAB Desktop
	Starting Green Hills MULTI From MATLAB
	Stopping Green Hills MULTI From MATLAB

	Running the Interactive Tutorial
	Querying Objects for Green Hills MULTI Software
	Loading Files into Green Hills MULTI Software
	Running the Project
	Working With Data in Memory
	More Memory Data Manipulation
	Closing the Connections to Green Hills MULTI Software
	Tasks Performed During the Tutorial

	Constructing Objects
	Example — Constructor for ghsmulti Objects

	Properties and Property Values
	Working with Properties
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example — Setting Link Property Values at Construction

	Setting Property Values with set
	Example — Setting Link Property Values Using set

	Retrieving Properties with get
	Example — Retrieving Link Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example — Direct Property Referencing in Links

	Overloaded Functions for ghsmulti Objects

	ghsmulti Object Properties
	Quick Reference to ghsmulti Properties
	Details About ghsmulti Object Properties
	hostname
	portnum
	timeout

	Project Generator
	Introducing Project Generator
	Project Generator Tutorial
	Process for Building and Generating a Project
	Create the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model
	Setting Solver Options
	Setting Real-Time Workshop Code Generation Options
	Setting Embedded IDE Link Code Generation Options

	Creating Your Project

	Model Reference
	About Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Block Reference
	Block Library: idelinklib_ghsmulti

	Blocks — Alphabetical List
	Index

